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Monte Carlo simulation techniques are derived for solving the ordinary Langevin 
equation of motion for a Brownian particle in the presence of an external force. These 
methods allow considerable freedom in selecting the size of the time step, which is restricted 
only by the rate of change in the external force. This approach is extended to the generalized 
Langevin equation which uses a memory function in the friction force term. General 
simulation techniques are derived which are independent of the form of the memory func- 
tion. A special method requiring less storage space is presented for the case of the ex- 
ponential memory function. 

1. INTRODUCTION 

The Langevin model of Brownian motion has been used extensively to describe the 
dynamic behavior of particles in a heat bath under conditions of thermodynamic 
equilibrium. The model describes the interaction between a Brownian particle and 
the surrounding bath in a statistical manner, rather than attempting to treat each 
individual Brownian particle-bath particle interaction. The force on the Brownian 
particle due to the bath is assumed to be composed of two parts: a frictional force 
which is proportional to the Brownian particle velocity and a randomly fluctuating 
force which can be described only in terms of its statistical properties. The Langevin 
equation is obtained by using this force in Newton’s equation of motion. 

Solving the Langevin equation is different than solving an ordinary equation of 
motion for which the solution is a unique trajectory in phase space. The stochastic 
nature of the Langevin equation allows an infinite number of possible trajectories for 
any given initial condition. The probability of any one trajectory is governed by the 
statistical properties of the randomly fluctuating force. Consequently, when solving 
the Langevin equation, one generally seeks to obtain the average value of a particle 
property (such as the mean squared displacement) with the average taken over all 
possible trajectories. 

The average particle properties can be calculated directly from the distribution 
function governing the probability of occurrence of the velocity and displacement as 
a function of time. If the distribution function can be obtained in an analytic form, 
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then the average properties can be readily calculated. This approach has been used 
extensively for the case of a free Brownian particle, a harmonically bound particle, 
and for a particle in a constant force field [ 1, 21. 

However, when the Brownian particle experiences more complicated interactions 
and analytic solutions are not obtainable, then numerical methods of solution are 
usually needed. An attractive approach is to use a Monte Carlo simulation [3,4]. In 
this method the Brownian particle trajectory in phase space is simulated by a sequence 
of randomly chosen incremental changes in the phase space coordinates. The average 
value of a desired property can then be estimated by the calculated average taken over 
the length of the simulation. 

Several Monte Carlo techniques have been used to numerically integrate the 
Langevin equation. Tut-q, et al. [5] and Weiner and Forman [6] use first-order 
numerical integration of the Langevin equation to simulate the Brownian particle 
trajectories. These methods are restricted to time steps between successive displace- 
ments which are small in comparison to the decay time p-l of the velocity auto- 
correlation function. The method used by Ermak [7] is derived from the diffusive 
limit of the Langevin equation and is therefore applicable only when the time step is 
much longer than the decay time p-l. Doll and Dion [8] have proposed an approach 
which is based on the independent single-variate velocity and displacement distribu- 
tion functions. This method neglects the statistical interdependence of the velocity 
and displacement which can be obtained from the bivariate velocity and displacement 
distribution function. 

The purpose of this work is to present a more general method for integrating the 
Langevin equation. The method is based on the analytic solution of the stochastic 
Langevin equation for a single particle in a constant force field. The solution is 
expressed as the bivariate velocity and displacement distribution function from which 
velocity and displacement equations are derived. These equations allow the use of 
intermediate time steps as well as time steps which are either much shorter or much 
longer than p-l. This approach is then extended to the generalized Langevin equation 
which uses a memory function in the friction force term. A special simulation method 
is presented for the case of the exponential memory function. 

2. ORDINARY LANCEVIN EQUATION 

2.1. Model System 

The system to be simulated consists of a Brownian particle in a heat bath of volume 
V. The particle is in thermodynamic equilibrium with the bath at temperature T and 
is subject to an external force F(r, t). The ordinary Langevin equation of motion for 
the Brownian particle is then 

mv=F-m@+X; t>-CQ. 

where t is time; n?, ,8, and v(t) are the mass, friction constant, and velocity of the 
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particle; and X(t) is a random force. As previously mentioned, the friction force and 
random force are used to approximate the interaction of the Brownian particle with 
the heat bath. The random force is assumed to be independent of the partide velocity 
and to fluctuate rapidly compared to changes in the velocity. The properties of the 
random force are described by a Gaussian distribution function with the mean and 
mean square 

(X(r) . X(f)) = 6mpkTS(r - t’). 
(2) 

Together Eqs. (1) and (2) completely describe the dynamic behavior of the Brownian 
particle in the Langevin model. 

2.2. Simulation Method 

Expressions for the velocity and position can be obtained by successive integrations 
of Eq. (I) and by restricting the size of the time step t such that the force F remains 
essentially constant during t. In general, this condition on the size of the time step is 
much less restrictive than the condition t < 8-l. Integration of Eq. (1) from time to 
to time 1, + t yields the equation 

v - “oe-af - -o_ zp . (1 - e-fit) = A jof e-B(t-t’)x(t, + r’) dt’, 

where a subscript 0 on the variables r. , v. , and F, indicates that it is to be evaluated 
at the time 1, and the lack of a subscript 0 on these variables indicates that it is to be 
evaluated at the time t, + t. A second integration plus an integration by parts on the 
X(t) term produces the result 

r-r,-$.(] ~e-dl,~~~[~-$(l -e-B,)] 

= dp jot [l - e-B(t-t’)] X(t, + t’) dt’. 

Eqs. (3a) and (3b) cannot be used directly to calculate the velocity and position 
change due to the random nature of X(t). One must first calculate the statistical 
properties of the two integrals involving X(t). The approach taken here is to use the 
bivariate probability distribution w(r, v, t), which governs the probability that a 
particle, initially located at r. with velocity v. and experiencing the force F, , will be 
located at r with velocity v after time t. Using the methods developed by 
Chandrasekhar [l], the bivariate probability distribution w(r, v, t) can be derived and 
is found to be 

It@, v, t) = [47r2(EG - H2)]-3/1 exp --(GR2 - 2HR. V + EV2) 
2(EG - H2) I ’ (4) 
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V =: Y - voe-at - (F,/m/3)(1 - e-pt), 

G = (kT/m)(l - e-zot>, 

H = (kT/n?J3)(1 - e--0t)2, 

E = (kT/m/!?2)(2j3t - 3 + 4e-Bt - e-20t). 

The statistical properties of the bivariate probability distribution can be readily 
calculated. The displacement and velocity functions, R and V, have a mean value of 
zero, a mean squared value of (R2> = 3E and ( V2) = 3G, and an average scalar 
product of (R . V) = 3H. This latter result indicates that the velocity and displace- 
ment are statistically correlated (i.e., ((r - rO) . v) # (r - ro) * (v)) with the depen- 
dence given by ((r - r,J . v> = (r - ro) . (v) + 3H. 

Simulation of the particle trajectory through phase space is based entirely upon the 
bivariate probability distribution. Starting from an initial phase space location (r, , vO), 
the force on the particle F, is calculated. A new set of velocity and position coordinates 
(r, v) is then chosen in accordance with the bivariate probability distribution. Methods 
for making this selection are discussed in the next section. Using the new location, 
the process is repeated for the duration of the simulation. 

2.3. Velocity and Displacement Equations 

The Gaussian function of Eq. (4) is uniquely defined by its first and second moments. 
Using these moments, a set of equations is readily obtained for the velocity and 
displacement change during the time step t. The equations are 

v = voe-Bt + 3 (1 - e-Ot) + B, , 
mP 

r = r. + Jb (1 - e--Bt) + 0 
P 

wlp [t - $ (1 - e+)] + B2 , 

where BI = B,(t) and B, = B,(t) are random functions of time chosen from the 
bivariate Gaussian distribution with the properties 

Oh) = <W = 0, (54 

(B, . B,) = 3H, (W 

(B12) = 3G, (54 

(Bz2) = 3E, (50 

and H, G, and E are given by Eq. (4). 
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Eqs. (5a) and (5b) have a linear dependence upon rO, vO, and F, with nonlinear 
coefficients in time t. The nonlinear coefficients will not increase the computing time 
for problems with fixed time steps as they will have to be calculated only once at the 
beginning of the simulation. The random functions B, and B, are interdependent as 
expressed by Eq. (5d). 

There are numerous methods by which the new phase space coordinates can be 
chosen from w(r, v, t). Another method is to first select the new velocity from the 
independent velocity distribution function 

wl(v, t) = j w(r, v, t) d3r. (64 

Again using the first and second moments, the velocity equation is 

v = voe-Bt + (F&$3)(1 - e+) $ B, , UN 

where B, is a random velocity change chosen from the Gaussian distribution with a 
mean value equal to zero and a mean squared value of 

(B12) = (3kT/m)(l - e-2”“). 

With the new velocity selected, the new position is chosen from the conditional dis- 
placement distribution function 

The displacement equation is then 

(6b) 

O’b) 

where B, is a random displacement chosen from a Gaussian distribution with a mean 
value of zero and a mean squared value of 

The displacement is seen to have a linear dependence on the new velocity v, as well 
as the old phase space coordinates v. and r. and the force F, . In contrast to Eqs. (5), 
the random functions B, and B, are independent, i.e., (B, * B,) = 0. 

Obviously, another set of equations can be obtained by first selecting the new 
position and then the new velocity. In this case the equations of motion are 
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v = vg . (2/3te-8t - 1 -7 e-28t)/C T /l[r - r&l - e-8t)2/C 

+ 5 [@(I - ec2flt) - 2( I - e-8f)z]/C $ B, , 

where again B1 and B, are independent random functions of time chosen from separate 
Gaussian distributions with the properties 

(B,) = (B& = (B, . B2j = 0, 

(B2”) = 5:: [/3t( I - ec20t) - ~(1 - e-flt)“]/C, 

C z 2flt _ 3 + &-fit - e-281. 

Comparing Eqs. (5) (7), and (8), there appear to be three different sets of equations 
for the motion of the particles. However, these sets of equations are equivalent in the 
sense that they select the new phase space coordinates in accordance with the bivariate 
probability distribution H(r, v, t). Therefore, the probability of a particular velocity 
and position change is governed by w(r, v, t) and Eqs. (5), (7), and (8) are just different 
methods of sampling this distribution. The equivalence of these equations can be 
easily shown by deriving Eq. (5) from Eqs. (7) and (8). Using Eq. (7a) to replace v(t) 
in Eq. (7b) yields Eq. (5b) and using Eq. (8a) to replace r(t) in Eq. (8b) yields Eq. (5a). 

As a demonstration of these methods, a number of simulations were conducted on 
a free particle (F = 0). The statistical properties of a free particle can be calculated 
analytically for any length of time using Eq. (4) and compared with the simulation 
results. Using the dimensionless variables 7 = /It, u = (rn/3/~7)~/~ v, and x = /3 
(~43kI”)~l~ r, the analytic results for the calculated properties are 

(U(T) * u(0)) = e-r, Pa) 

([X(T) - x(O)]“> = 2(~ - 1 + e-T), Pb) 

(U(T) * [X(T) - x(O)]) = I - c>-‘. (9c) 

Simulations were conducted using time steps ranging from 0.01 to 100. Each 
method produced trajectories whose average properties were in excellent agreement 
with the analytic results. Table I shows the results from two simulations in which 
Eqs. (7) and (8) were used and the time step was 4~ = 0.5. Each simulation was run 
for a total of 100,000 trajectories. 
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TABLE I 
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7 1” II* 
-.- - 

0.0 1.ooo 1.001 

0.5 0.607 0.607 

1.0 0.368 0.368 

1.5 0.223 0.221 

2.0 0.135 0.134 

2.5 0.082 0.080 

3.0 0.050 0.048 

3.5 0.030 0.028 

4.0 0.018 0.019 

4.5 0.011 0.011 

5.0 0.007 0.007 

5.5 0.004 0.004 

6.0 0.002 0.003 

6.5 0.002 0.001 

7.0 0.001 0.000 

7.5 0.001 0.001 

8.0 0.000 0.001 

<U(T) . U(O)> MT) . ix(+) - x(O)]) <[x(4 - x(O)lV 

III" 

0.998 

0.605 

0.366 

0.221 

0.134 

0.079 

0.047 

0.027 

0.018 

0.009 

0.006 

0.005 

0.003 

0.000 

0.000 

0.001 

0.004 

I II 

o.ooo o.ooo 

0.393 0.394 

0.632 0.633 

0.777 0.779 

0.865 0.866 

0.918 0.917 

0.950 0.949 

0.970 0.968 

0.982 0.983 

0.989 0.986 

0.993 0.994 

0.996 0.999 

0.998 1.001 

0.998 0.999 

0.999 0.996 

0.999 0.994 

ID30 0.997 

III 

0.000 

0.393 

0.632 

0.778 

0,864 

0.914 

0.947 

0.965 

0.979 

0.985 

0.994 

0.999 

1.ooo 

0.995 

0.995 

0.987 

0.996 

I 
__- 

0.000 

0.213 

0.736 

1.446 

2.271 

3.164 

4.100 

5.060 

6.037 

7.022 

8.013 

9.008 

10.00 

11.00 

12.00 

13.00 

14.00 

11 111 
-- 

0.000 0.000 

0.213 0.213 
0.736 0.736 

1.448 1.447 

2.274 2.272 

3.168 3.163 

4.103 4.095 

5.061 5.051 

6.037 6.025 

7.022 7.007 

8.014 7.996 

9.001 8.992 

10.01 9.993 

11.01 10.99 

12.01 il.99 

13.00 12.98 

14.00 13.97 

a I-Analytic results from Eqs. (9). 
b II-Simulation results using Eqs. (7). 
E III-Simulation results using Eqs. (8). 

3. GENERALIZED LANGEVIN EQUATION 

3.1. Use of Memory Functions 

A more general form of the Langevin equation is obtained through the use of a 
memory function in the friction force term [9]. In this formalism, the friction force is 
proportional to a weighted average of the particle velocity taken over its past history 
with the weighting factor given by the memory function. The ordinary Langevin 
equation is the special case where the memory function is proportional to the Dirac 
delta function. 

Using the memory function approach, the generalized Langevin equation is 

s t m+=F-m M(t - t’) v(t’) dt’ + X, t > --a, 
---a (104 



176 ERMAK AND BUCKHOLTZ 

where m, t, v(t), and F(r, t) are as defined in Eq. (2), M(t) is the memory function, and 
X(t) is the random force. Equation (lOa) is the stationary form of the generalized 
Langevin equation with the lower limit of the friction force integral extended to minus 
infinity rather than set equal to a specific initialization time. The autocorrelation 
function of the random force is related to the memory function by the fluctuation- 
dissipation theorem 

(X(t) . X(0)) = 3mkTM(t) (lob) 

and the memory function is normalized so that 

s 
cc dt M(t) = ,L3. 

0 
(104 

Assuming that the statistical properties of the random force are governed by a 
Gaussian distribution function, then Eq. (lob) uniquely defines the properties of the 
random force. 

Integrating Eq. (lOa) by the method of Fourier-Laplace transforms yields the 
following equations for the particle velocity and position. 

v(t) = k 1: dt’ #(t - t’){F(r, t’) + X(t’)j, 
m 

r(t) = r(-~0) + f [: dt’ (b<t - t’){F(r, t’) + X(f)]. (lib) 
x 

In these equations t)(t) = .P-l[(s + M(s))-l], M(s} = Y[M(t)], and 4(t) = $dt’ 
$(I t’ I) where / t 1 is the absolute value of t, B is the Laplace transform operator 
defined to be 

cY[M(i)] = Iox dt e-“tM(t), (12) 

and Y-l is the inverse Laplace transform operator. 
The statistical properties of the free particle (F = 0) dynamic behavior can be 

calculated from Eqs. (1 la) and (1 lb) and the properties of the random force given by 
Eq. (lob) and (1Oc). For example, the velocity autocorrelation function is found to be 
(see Ref. [9]) 

(v(t’) . v(f)) = (3kT/m) #(I t’ - t” I). (134 

The displacement-velocity correlation function is 

(dr(t’; t) . v(tl)‘> = (3kT/m)[+(t’ - t”) - +(t’ - t” - t)] (1W 
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and the displacement autocorrelation function is 

(A#‘( t) * A@; t)> = (3kT/m)[X(t’ - t” + t) - 2X@’ - t”) + x(t’ - t” 

where 

Ar(t’; t) = r(t’) - r(t’ - t) and x(t) = 1” dt’ $$(t’). 
0 

The particle diffusion coefficient is [lo] 

D = f/” 
0 

dr(v(t) v(0)) = g . 

3.2. Simulation Equations 

(134 

When the particle experienes additional interactions, it may not be possible to 
calculate the particle properties analytically and a numerical simulation becomes 
useful. As was the case with the ordinary Langevin equation, a velocity and displace- 
ment equation is sought which is restricted in the length of the time step only by the 
rate of change in the external force F. 

Equations (1 la) and (1 lb) provide a set of equations from which the particle 
trajectory through phase space can be calculated. Letting the time step be t and using 
the notation v, = v(nt) and dr, = r, - r,-i , the following equations are obtained 
for the velocity and displacement: 

(14b) 

where V, and R, are Gaussian random deviates and the difference operator A& = 
4% - $n-1 has been used in Eq. (14b). In obtaining these equations it was assumed 
that the force F could be considered to be constant during each time step. 

The sequence of velocity and displacement random deviates {V,} and (R,} are 
described by a multivariate probability distribution. Their variance and covariance 
can be obtained from Eqs. (13a)-(13~) and are found to be 

(Vi) = (RJ = 0, 
(Vi . VJ = (3kT/m) #i-$, 

(Ri . Vj) = (3kT/m) A&j, 
(Ri . Rj) = (3kT/m) A2xiei, 

(154 
(IW 

(154 

(154 

where the difference operator A2x, = xn+l - 2~~ + xnpl was used in Eq. (15d). 

58I/3Sb3 
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The random deviates V, and R, for any given time step are seen to be statistically 
correlated to the deviates at all other time steps. As a matter of convenience, it is 
desirable to express V, and R, in terms of statistically independent Gaussian random 
deviates. This can be done by using the weighted sums 

v, = c 5.n-iYi ) 

i=-cc 
Wa) 

Rn = E lpn-iyi + 5n-iG.1, i=--3; (16b) 

where 
(Y,) = (Zi) = (Yi ’ Zj) = 0, 

(Yi * Yj) = (Zi ’ Zj) = 6ij, 
(17) 

and & is the Dirac delta function. The weighting parameters {CT,}, {pn}, and {c,} are 
defined by the following sets of equations: 

G *i = f 5j5i+j , 
j=O 

i=O,oo. 3 

(184 

T A2xi = f {pjpi+j + Ui+iL 
j=O 

i = 0, co. 

The infinite sums in Eqs. (14), (16), and (18) present a computational difficulty to a 
numerical simulation. This obstacle can be overcome if it can be assumed that the 
velocity autocorrelation function #(t) is essentially zero for sufficiently large values of 
t. Letting & = 0 for i 2 N, then ai = 0 for i > N and Ac$~ = A2xi = pi = ci = 0 
for i > N. The remaining values of ui , pi , and {i can be calculated form Eq. (18) and 
the velocity and displacement can be calculated from Eqs. (14) and (16) with the 
summations limited to the weighting parameters with nonzero values. 

The method for simulating the generalized Langevin equation is similar to the 
method previously presented for the ordinary Langevin equation except for the 
initialization conditions. In addition to defining the initial velocity, position, and 
external force on the particle, the values of these parameters at the previous N time 
steps must also be defined in order to calculate the new velocity and position. Calcula- 
tion of the new coordinates can be done by specifying the initial N + 1 values of the 
random deviates Yi and Zi (see Eq. (16)) and the force Fi , and then retaining the past 
N + 1 values of these parameters as the simulation proceeds. 

The approach described above presents a method for simulating the particle 
trajectory through phase space. However, if the force F and the desired particle 
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properties can be calculated from the particle trajectory in position space, it is not 
necessary to have knowledge of the time history of the particle velocity. In this case, 
the particle displacement can be calculated from the equation 

A$n-iFi + t un-A 9 
i=n-N i=n-N 

where 

and 

?!$ Azxi = Fi ujui+i, i = 0, N, 
j=O 

and the velocity can be neglected since it is not explicitly contained in Eq. (19). Using 
this approach will reduce the storage requirements by about a third of that required 
for a simulation in phase space and will also reduce the number of calculations per 
time step. 

4. EXPONENTIAL MEMORY FUNCTION MODEL 

A numerical simulation of the generalized Langevin equation with any desired 
memory function can be accomplished by the general method presented in the previous 
section. Here another method is presented for the exponential memory function model. 
In this method the exponential memory function kernel is handled by introducing the 
acceleration as another stochastic variable [2, Ill. Consequently, the new coordinate 
values (r, v, a) depend only on the values at the previous time step as was the case 
with the ordinary Langevin equation. 

The generalized Langevin equation with an exponential memory function can be 
obtained from Eq. (IO) by setting M(r) = c@+. The random force can be convenient- 
ly expressed as 

X(r) = C&I It dr’ e-rr(t-t’)Y(r’), 
--io (204 

where Y(r) is also a Gaussian random function whose autocorrelation function is 

(Y(r’) . Y(f)) = 6 5 8(r’ - r”). 

Using this expression for the random force and introducing the acceleration as 
another stochastic variable, the Langevin equation can be written as 
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A(r, + t) = i(to)eet + (I/m)[F(r, t, + t) - F(r, to) +I 

_ (),.j 
I 

t dt’ e-“‘t-t” [V(f” + 2’) - Y(to + 01. WC) 
0 

The a(t,) and F(r, to) terms have been used to replace the integral from minus infinity 
to to so that the acceleration is independent of its past history prior to the time to. 
The free particle (F = 0) properties of the exponential memory function model have 
been described by Berne et al. [ 121 and Friedman [ 131 who points out the relation to 
certain measurable coefficients. The velocity autocorrelation function is 

(v(t) . v(0)) = J$ e-(a12jt [cos(yl) -f + sin(yl)], (21) 

where y2 = $I - a2/4 and t > 0. 
An equation for the particle velocity in terms of the random force and the initial 

velocity, acceleration, and external force is obtained by integrating Eq. (20~) using 
Laplace transforms and by assuming that the external force is essentially constant 
during the period of the time step. A second integration yields an equation for the 
particle displacement. The acceleration equation is obtained by differentiating the 
velocity equation. From these three equations, the trivariate distribution function 
W(r, v, a, t) can be derived using Markoff’s method [l, 14, 151. This function governs 
the probability that a particle, initially located at r. , with velocity v. , while accelera- 
ting at the rate a,, and experiencing the external force F, , will be located at r with 
velocity v and acceleration a at time t. 

W(r, v, a, t) is Gaussian and therefore is uniquely defined by the moments 

(A} =(V) =(R) = 0, 

(A") = E j"t dt' $!?(t'), s)(t) = afle-(b/2)t [cos(yt) - + sin(yf)], 

< V2> =-I c jot dt ‘ d2(t’), d(r) = jot dt’ y&t’), 

(R2) = E jot dt’x2(t’), x(l) = jot dt’ W), 

<A . V> = E jt dt’ $(t’) d(f), 
0 

(A . R) = E [‘dt’ 4(f) X(t’), 
‘0 

(22) 

0’ . R) = E jot dt’ +(t’) X(t’), 
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where 

A = a - -$ a,W> -t vo4(t) - 4~ F&h 

v = v - v,U - x/G>1 - + ao#@) - $Fdf), 

R = r - q, - -$ a&t) - v,[t - Q(t)] I ip F&?(t), 

and E = 6kTlmfi and Q(t) = J’idt’x(t’). The notation of Section 2 is used here so 
tjat a subscript 0 on the variablies r,, , v. , a,, , and F, indicates that it is evaluated at 
time t, and the lack of a subscript 0 indicates that it is evaluated at time t, t t. 

Equations (22) provide the information for simulating the particle acceleration, 
velocity, and position. The new coordinate values (a, v, r) are seen to be functions of 
the initial coordinate values (a 0, v,, , r,,) and the time step I, and therefore are indepen- 
dent of the particle’s history prior to the initial time t, . 

5. CONCLUSION 

A Monte Carlo simulation technique was presented for solving the generalized 
Langevin equation for a Brownian particle in the presence of an arbitrary external 
force. The method is sufficiently general so as to be independent of the choice of the 
memory function used to described the friction and random forces. The particle 
trajectory in phase space is simulated by a sequence of randomly chosen changes in 
the particle velocity and position. The method also allows the possibility of a simula- 
tion solely in position space without ever having to calculate the particle velocity. 

Special attention was given to the Dirac delta (ordinary Langevin equation) and the 
exponential memory function models. Simulation techniques were derived for these 
models which require less information storage than does the general simulation 
method. In these methods the new particle coordinates depend only on the coordinate 
values at the previous time step and not on the entire past history of the particle 
trajectory in phase space. 

All of the simulation techniques presented in this paper allow considerable freedom 
in selecting the size of the time step. The length of the time step between successive 
displacements is restricted only by the rate of change in the external force. Conse- 
quently, within the constraints due to the external force and the specific needs of the 
desired solution, the time step may be chosen to be any size relative to the free particle 
velocity autocorrelation function decay time. 
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